“Endurance” Regression Testing
Obtaining a Hydrostatic Design Basis for Fiberglass pipe

ASTM Subcommittee 20.23
November 16, 2015

David Granderson
The problem

- Lack of confidence in ASTM D2992 methods

- ISO14692, Shell DEP
 - Prescribing Regression Gradients
 - Requiring 100’s of 1000 hour tests
Typical complaints of ASTM D2992-B static

1. All specimens are damaged

2. Multiple failure modes throughout the test, yet plotted as (1)

3. Extrapolating different and un-natural failure modes likely inaccurate

4. Data < 1000 hours dominates results (most un-natural failure mode of pipe in operation)

5. Time to failure is random, single data points at any given time
difficult to gauge the reliability of a single failure

6. Testing near critical stress for so long, Un-avoidable to cycle (pressure /temperature)
Cycles result in failures which otherwise would not have occurred. i.e. Power loss
ASTM D2992: (PEL) Test Damaged pipe to Predicting performance of undamaged pipe?

Hoop Stress at Rated Pressure was about 25% of STB Strength

Minimum HDB Test Pressure was about 2 times Rated Pressure

HDB Test Region

Hoop Stress at Minimum HDB Test Pressure was about 25% of STB Strength
“Endurance” Regression Testing

• Modified ASTM D2992-B, maintaining the concept, eliminating some problems

• Endurance: The ability to withstand hardship or adversity; especially: the ability to sustain a prolonged stressful effort or activity

 – Stressful (bearable, not damaged)
Endurance Testing (concept)

- Choose aging pressure (PEL, traditional HDB, experience, other)
- Age all specimens at constant pressure
- Fail multiple specimens at known times
- Plan failure times, invite all (3rd party, end users, YOU!)
Concept continued

- On failure day: fail multiple specimens – ASTM D1599 *
 Average, standard deviation at each failure time, identify outliers

- Plot data (Aging pressure, Failure pressures Vs time)

- Extrapolate failure pressure

- Intersect failure/ aging pressure = life at constant age conditions

 • Specimens creep naturally / force fluids to diffuse into laminate

 • Degradation is natural nearer typical design conditions
Prototype: 150F, 100 – 6000 hours
aging stress: HDB > (15KSI) > operating

G = + 0.043
Prototype: same data 500 – 6000 hours

Interpolated burst strength does not intersect aging pressure for 600 years, data not correlating
Discuss + regression slope

- Pipe gaining strength over time

- Possibilities:
 - Resin cures a bit further initial aging process?
 - Residual stress, resin shrinkage in cure, later swelling of resin with increased water saturation?
 - Plasticization of the inner resin layers, lowering Tg and modulus allowing greater strain before cracking?
 - Beneficial Creep, reinforcement aligns to suit loading conditions
Conclusion

• Fiberglass pipe rate of degradation is a function of:
 – Construction Materials
 – Strain
 – Chemical exposure
 – Temperature

• This method measures these effects in a more natural state

• Accurate fiberglass Regression Gradients
 = greater confidence in design
 = potential method evaluating remaining service life of installed pipe