The following are technical changes proposed the work group for next revision of API Spec 11B. These items were identified as part of the comment resolution process from the last ballot. You are voting on these changes only (highlighted in “blue”). No other changes to the Spec 11B document will be accepted for this ballot.

3.0 Terms and Definitions
(Two definitions are proposed to be added to the list.)

continuous processing
material flows steadily through the processing equipment in an undefined quantity or volume

batch lots processing
material is processed in a machine in defined quantities or volumes

Paragraph 6.1, as previously balloted

6.1 General requirements

Products designed and manufactured prior to the publication of this Specification and in conformance with API Specification 11B, 26th edition shall be considered as meeting the requirements of this Specification.

Note: In this Specification, some dimensions are governed by fractional USC units and converted to SI units for reference. When these fractional USC units are converted to decimal numbers, there may be small inconsistencies in the number of decimal places which do not indicate the level of accuracy required.

Paragraph 6.1, proposed change (delete Note)

6.1 General requirements

Products designed and manufactured prior to the publication of this Specification and in conformance with API Specification 11B, 26th edition shall be considered as meeting the requirements of this Specification.

Note: In this Specification, some dimensions are governed by fractional USC units and converted to SI units for reference. When these fractional USC units are converted to decimal numbers, there may be small inconsistencies in the number of decimal places which do not indicate the level of accuracy required.
7.2.2 Inspection/measuring/testing equipment calibration (except for thread gauges)

Inspection, measuring and testing equipment used for acceptance shall be identified, inspected, calibrated and adjusted at specific intervals in accordance with documented procedures, and this Specification. The calibration or verification of measuring and testing equipment used for product acceptance shall be traceable to the applicable national or specifications agency. Inspection, measuring and testing equipment shall be used only within the calibrated range. Calibration shall conform with the requirements of ISO/IEC 17025, ANSI NCSL Z540-1 or equivalent national standard. See Annex I for the calibration of thread gauges.

Calibration intervals for measuring and testing equipment shall be established based on repeatability and degree of usage. Calibration intervals shall be a maximum of three months until a recorded calibration history is established. Intervals may be lengthened or shortened based on calibration history. A calibration interval cannot be increased by more than twice the previous interval.

Calibration standards used to calibrate measuring and testing equipment shall be checked and approved at least once a year by an independent calibration agency with traceability to the applicable national or specifications agency.

Paragraph 7.2.2 proposed change

7.2.2 Inspection/measuring/testing equipment calibration (except for thread gauges)

Inspection, measuring and testing equipment used for acceptance shall be identified, inspected, calibrated and adjusted at specific intervals in accordance with documented procedures, and this Specification. The calibration or verification of measuring and testing equipment used for product acceptance shall be traceable to the applicable national or specifications agency. Inspection, measuring and testing equipment shall be used only within the calibrated range. Calibration shall conform with the requirements of ISO/IEC 17025, ANSI NCSL Z540-1 or equivalent national standard. See Annex I for the calibration of thread gauges.

Calibration intervals for measuring and testing equipment shall be established based on repeatability and degree of usage. Calibration intervals shall be a maximum of three months until a recorded calibration history is established. Intervals may be lengthened or shortened based on calibration history. A calibration interval cannot be increased by more than twice the previous interval.

Calibration standards used to calibrate measuring and testing equipment shall be checked and approved at least once a year by an independent calibration agency with traceability to NIST or the applicable national or specifications agency.
Paragraph A.4.2 as previously balloted

A.4.2 Mechanical property testing

Mechanical properties tests for steel rods shall be performed in accordance with ASTM A370, OR ISO 6892. A minimum of two mechanical tests shall be performed on at least two rod bodies (one near the beginning and one near the end of each furnace lot), per mill heat after final thermal processing. Test samples shall meet the requirements of Table A.5. Continuous monitoring and/or statistical process control in conformance with ISO 11462-1 is an acceptable alternate method.

Manufacturing lots failing to meet the test criteria may be reprocessed and considered acceptable if the test criteria are met when the manufacturing lot is retested.

Paragraph A.4.2 proposed change

A.4.2 Mechanical property testing

Mechanical properties tests for steel rods shall be performed in accordance with ASTM A370, OR ISO 6892. A minimum of two mechanical tests shall be performed on at least two rod bodies (one near the beginning and one near the end of each heat), after final thermal processing. Test samples shall meet the requirements of Table A.5. Continuous monitoring and/or statistical process control in conformance with ISO 11462-1 is an acceptable alternate method.

Manufacturing lots failing to meet the test criteria may be reprocessed and considered acceptable if the test criteria are met when the manufacturing lot is retested.

Paragraph A.5 as previously balloted

A.5 Dimensional inspection

Sucker rods shall be inspected according to Table A.6. When a micrometer or caliper is used to measure a circular feature, rather than an allowable gap gauge, a minimum of three measurements shall be taken around the diameter of the feature. The three measurements shall be averaged to determine the nominal dimension.

Paragraph A.5 proposed change

A.5 Dimensional inspection

Sucker rods shall be inspected according to Table A.6. When a micrometer or caliper is used to measure a circular feature, rather than an allowable gap gauge, if a single diameter measurement is out of tolerance then a minimum of two additional measurements in different locations shall be taken. The measurements shall be averaged to determine the nominal dimension.
Table A.6, (portion of table being changed), as previously balloted

Table A.6 Dimensional inspection of steel sucker rods, steel pony rods, and sinker bars

<table>
<thead>
<tr>
<th>Wrench square length l_{WS}</th>
<th>Caliper or gap gauge</th>
<th>Measure to dimension listed in Table A.1, or set gap gauge to assure the product dimension is within the specified tolerance. The product length shall not be shorter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamfer or radius, maximum, BR1</td>
<td>Caliper or radius gauge</td>
<td>Measure to dimension listed in Table A.2.</td>
</tr>
</tbody>
</table>

- **Note:** Anvils on measuring instruments shall be 0.125 in (3 mm) wide minimum.
- **Note:** Anvils on measuring instruments shall be 0.125 in (3 mm) wide minimum and their length shall be equal to or exceed the wrench square width.

Table A.6 Dimensional inspection of steel sucker rods, steel pony rods, and sinker bars

<table>
<thead>
<tr>
<th>Wrench square length l_{WS}</th>
<th>Caliper or gap gauge</th>
<th>Measure to dimension listed in Table A.1, or set gap gauge to assure the product dimension is within the specified tolerance. The product length shall not be shorter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamfer or radius, maximum, BR1</td>
<td>Caliper or radius gauge</td>
<td>Measure to dimension listed in Table A.2.</td>
</tr>
</tbody>
</table>

- **Note:** Anvils on measuring instruments shall be 0.125 in (3 mm) wide minimum.
- **Note:** Anvils on measuring instruments shall be 0.125 in (3 mm) wide minimum and their length shall be equal to or exceed the wrench square width.

Table C.1, (reference within table and negative tolerance of D_3), as previously balloted

<table>
<thead>
<tr>
<th>D_{2a} External chamfer diameter, minimum</th>
<th>Size</th>
<th>1.365</th>
<th>34.67</th>
<th>1.490</th>
<th>37.85</th>
<th>1.677</th>
<th>42.60</th>
<th>1.990</th>
<th>50.55</th>
<th>2.177</th>
<th>55.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{1a} Internal chamfer diameter</td>
<td>Size</td>
<td>1.110</td>
<td>28.19</td>
<td>1.253</td>
<td>31.83</td>
<td>1.378</td>
<td>35.00</td>
<td>1.566</td>
<td>39.78</td>
<td>1.753</td>
<td>44.53</td>
</tr>
<tr>
<td>Tolerances</td>
<td></td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.055</td>
<td>-1.39</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
</tr>
</tbody>
</table>

Table C.1, (reference within table and negative tolerance of D_3), proposed change

<table>
<thead>
<tr>
<th>D_{2a} External chamfer diameter, minimum</th>
<th>Size</th>
<th>1.365</th>
<th>34.67</th>
<th>1.490</th>
<th>37.85</th>
<th>1.677</th>
<th>42.60</th>
<th>1.990</th>
<th>50.55</th>
<th>2.177</th>
<th>55.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_{1a} Internal chamfer diameter</td>
<td>Size</td>
<td>1.110</td>
<td>28.19</td>
<td>1.253</td>
<td>31.83</td>
<td>1.378</td>
<td>35.00</td>
<td>1.566</td>
<td>39.78</td>
<td>1.753</td>
<td>44.53</td>
</tr>
<tr>
<td>Tolerances</td>
<td></td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
<td>+0.015</td>
<td>+0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
<td>+0.000</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+0.055</td>
<td>-1.39</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
<td>-0.073</td>
<td>-1.85</td>
</tr>
</tbody>
</table>

Table C.2, (reference within table and new footnote), as previously balloted

<table>
<thead>
<tr>
<th>D_a Diameter of box counterbore</th>
<th>Dimension</th>
<th>0.955</th>
<th>24.26</th>
<th>1.080</th>
<th>27.43</th>
<th>1.205</th>
<th>30.61</th>
<th>1.393</th>
<th>35.38</th>
<th>1.580</th>
<th>40.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerances</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
</tr>
<tr>
<td></td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

- **Note:** See Figure C.2
- **Note:** See Figure C.3
- **Note:** The hollow crest of cold-formed threads shall not be considered detrimental.
- **Note:** See Table B.3 for polished rod box theoretical cone base dimension D_a.
- **Note:** See Figure A.2

Table C.2, (reference within table and new footnote), proposed change

<table>
<thead>
<tr>
<th>D_a Diameter of box counterbore</th>
<th>Dimension</th>
<th>0.955</th>
<th>24.26</th>
<th>1.080</th>
<th>27.43</th>
<th>1.205</th>
<th>30.61</th>
<th>1.393</th>
<th>35.38</th>
<th>1.580</th>
<th>40.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tolerances</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
<td>+0.25</td>
<td>+0.010</td>
</tr>
<tr>
<td></td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
<td>-0.00</td>
<td>-0.000</td>
</tr>
</tbody>
</table>

- **Note:** See Figure C.2
- **Note:** See Figure C.3
- **Note:** The hollow crest of cold-formed threads shall not be considered detrimental.
- **Note:** See Table B.3 for polished rod box theoretical cone base dimension D_a.
- **Note:** See Figure A.2

Note

- **Note:** Tapping marks in the counterbore shall not be reason for rejection.