Effects of High-Low Misalignment on Girth Weld Integrity

PRCI Research Update
Yong-Yi Wang and Steve Rapp
ywang@cres-americas.com

Center for Reliable Energy Systems
5960 Venture Dr., Suite B
Dublin, OH 43017
USA
614-808-4872

January 23, 2014

Overview of this Presentation

- Background and incentives
- Objectives and work scope
- Work completed so far
 - Experimental tests
 - Numerical analysis
- Observations from the work completed
- Recommendations
- Concluding remarks / implementation issues
Background and Incentives

- Some newly constructed pipelines in the US experienced
 - Hydrostatic failures
 - In-service leaks soon after lines were put in service
- PHMSA issued ADB-10-03 (Mar 18, 2010)
 - Girth weld quality issues were identified.
 - Some of the contributing factors:
 - Improper transitioning,
 - Misalignment,
 - Improper welding practice and/or not following qualified welding procedure, and
 - Hydrogen-assisted cracking and high stress.
- Misalignment is not new in pipelines
 - Girth welds with high degrees of misalignment have provided satisfactory service
- Questions
 - Why some fail and others are OK?
 - Is the current practice (including codes and standards) adequate?

Possible negative impact of high-low misalignment

- Difficulty in making high-quality root pass
- Local stress concentration at the geometric discontinuities
 - May contribute to the formation of hydrogen cracks
- Gross stress concentration due to reduced load-bearing cross-sectional area
- Increased difficulty in interpreting NDT results?
- Contributors to the performance of welds with misalignment
 - Weld transition profile
 - Ratio of misalignment over pipe wall thickness
 - Weld strength mismatch
 - Existence of indications/flaws
Background and Incentives

- Current language in API 1104
 - "Misalignment should be limited to 1/8". Misalignment greater than 1/8" is permitted when the misalignment is evenly distributed around the circumference."

- Deficiency in the code language
 - The impact of the level of misalignment is inadequately addressed
 - e.g., the same 1/8" misalignment can have different impact on 3/8" vs. ¾" WT welds.
 - Does not address the impact of
 - Weld profile
 - Weld strength mismatch

- How is misalignment managed in the fields?
 - More on implementation issue later

Objectives and Work Scope of PRCI Project

- Objectives
 - Better understanding of the impact of high-low misalignment
 - Provide practical guidelines on the management of misalignment

- This work does not address
 - Reduction of misalignment through pipe specifications
 - Use of clamps to deform pipes to reduce misalignment
 - Rotation of pipes (issues related to practicality, safety, etc.)
 - Welding practice aimed at reducing the possibility of HAC

- This work addresses consequence of misalignment
 - Divided into two parts
 - Nominally defect-free welds → workmanship criteria
 - Weld with planar flaws → ECA criteria
Overall Approach

- Fabricate welds
- Test welds
 - Cross-weld tensile specimens of welds with misalignment
 - Tests to characterize basic material properties
- Finite element analysis
 - Sensitivity analysis was conducted to determine factors that have major impact on load capacity
 - Refined analysis to determine the quantitative impact of major influencing factors
 - Correlation of small-scale specimen with full-scale pipe
- Recommendations

Test Materials

- Mechanized GMAW weld
 - Made under the direction of TransCanada at CRC-Evans
 - UOE pipe
 - 36" OD
 - 0.372" WT
 - Grade X70
 - Target maximum misalignment of 3.2 mm
 - Welding wire: ER70S-6
- SMAW weld
 - Made under the direction of Spectra Energy
 - ERW pipe
 - 24" OD
 - 0.500" WT
 - Grade X70
 - Target maximum misalignment up to 6.4 mm (50% WT) if possible
 - Welding rod: E8045-P2 H4R
High-Low Misalignment around the Circumference

- Maximum high-low misalignment is 2.1 and 5.0 mm for the 36 inch and 24 inch pipe, respectively.

The high-low misalignment shown is magnified by a factor of 20.

Test Setup

- Upper Crosshead
- Support Column
- Load Cell
- Upper Grip
- Lower Grip
- Hydraulic Actuator
- Laser Extensometer
Deformation Pattern of Specimens from 36” Pipe

- Necking of a specimen during and after test

Response of Specimens from 36” Pipe

- Maximum stress is essentially an indication of the maximum tensile strength of the pipe.
- The UTS variation is about 5%.
Deformation Pattern of Specimens from 24" Pipe

- At small misalignment (specimen Nos. 1 and 12), base metal necking was the final failure mode, although large plastic deformation occurred in the weld region at the point.

Specimen No. 1
Specimen No. 12 is similar

Response of Specimens from 24" Pipe

- Other than specimen Nos. 1 and 12 which “failed” by necking in the base metal, all other specimens “failed” by shearing through the welds.
Iso-Load-Capacity Curves from FEA

- Load capacity (LC) factor
 - $\text{LC} = \text{LC of welds with misalignment} / \text{LC of welds with zero misalignment}$
- Have conservative assumption about the weld transition profile

![Load Capacity Curves](image)

Effects of the Circumferential Extent of Misalignment

- Load capacity decreases with increasing extent of misalignment
- Even with 40% normalized misalignment, the load capacity reduction is only 6.5-7.5% when the local misalignment extends to 12.5% circumference.

![Misalignment Curves](image)
Measured Misalignment

- OD=48", WT=15.9mm, spiral pipe
- The magnitude if the misalignment is magnified by X20.
- Misalignment is local.

Response of Specimens from 24" Pipe

- Case-specific analysis: using the profiles of current test welds
- Generic analysis: using generic (conservative) weld profiles. These profiles are used in the recommendation of misalignment limits.
Main Observations

- **GMAW welds**
 - High-low misalignment between 0.0 and 2.1 mm (misalignment / WT = 0.00-0.22)
 - All “failures” occurred in the base metal.
 - The “UTS” variation of approximately 5% was observed.
 - There is a dependence UTS on o’clock position.
 - Weld strength mismatch ratio = ~1.05 (5% overmatching).

- **SMAW welds**
 - High-low misalignment between 0.0 and 5.0 mm (misalignment / WT = 0.00-0.39)
 - Weld strength mismatch ratio = 0.95 (5% undermatching)
 - There is a load capacity reduction of 9.5% for misalignment up to 39% of wall thickness.

- For SMAW welds, the iso-load capacity relation of CRES models captures the highest load capacity reduction.

Guidelines on Misalignment

- **Factors affecting the performance of girth welds with misalignment**
 - Weld profile
 - Ratio of misalignment / pipe WT
 - Weld strength mismatch
 - Applied longitudinal stress
 - Indications/flaws

- **Challenges**
 - No one-size-fits-all criteria on misalignment limit.
 - Other factors have influence on the tolerance of misalignment.

- **Approaches adopted** – use reasonably conservative estimates
 - Weld strength mismatch ratio = 0.90 (10% undermatch)
 - Applied stress = 70-90% SMYS (consistent with ASME B31 allowable stress)
Use of Iso-Load-Capacity Factor

- Relative allowable misalignment is given as a function of mismatch and applied stress level.
- Weld profile is handled through the requirements of weld dimensions.

Welds with Smooth ID Transition (with Back Welds)

- Applied stress = 90% SMYS, allowable misalignment is the larger of
 - 1/3 of pipe wall
 - 1/8”
- Applied stress = 80% SMYS, allowable misalignment is the larger of
 - 1/2 of pipe wall
 - 1/8”

\[W_{OD} \geq 1.15 \times t_p + 1/8” \]
\[W_{ID} \geq h_{MS} + 1/8” \]
Welds without back welds

- Applied stress = 90% SMYS, allowable misalignment is the larger of
 - 15% of pipe wall
 - 1/8"
- Applied stress = 80% SMYS, allowable misalignment is the larger of
 - 25% of pipe wall
 - 1/8"

- These are upper limits when cross-weld strength is considered

- Other factors may dictate smaller allowance
 - Feasibility of welding
 - Quality control of field welds
 - Local stress concentration
 - HAC
 - Fatigue

Concluding Remarks

- High levels of misalignment can be tolerated in pipeline girth welds with minimal negative impact on their integrity if
 - (1) welds can be made without "large" planar flaws and
 - (2) welds have sufficient toughness and ductility to avoid the initiation of brittle fracture.
 - The second condition is generally met with modern welding practice.

- The misalignment management should therefore focus on
 - minimizing the likelihood of having planar flaws
 - detecting and repairing such flaws,
 - having smooth weld profiles with sufficient width
 - Having overly-undermatched weld metal

- High levels of misalignment, by themselves, are not an integrity concern.
 - static loading
 - Fatigue is a separate topic that is not covered in this project.
Concluding Remarks

- Management of misalignment requires collective across-department actions.
 - Have a strategy at the start of a project. Consider all contributing factors.
- Thoughts about API 5L and 1104 joint task group
 - Limiting pipe dimensional tolerance alone is not a practical solution to the possible negative impact of misalignment.
 - Scientifically justifiable one-size-fits-all misalignment limits don’t exist.
- Generally-accepted procedures for the measurement and documentation of misalignment in the fields don’t exist.
- Process of mitigation is not clear.
 - What to do if misalignment limit is exceeded? Could you weld with stronger consumable?

Special caution
- Very-thin-walled pipes